Section 12.9

Combinations

Combination

- A combination is a distinct group (or set) of objects without regard to their arrangement.
- The number of combinations possible when r objects are selected from n objects is found by

$$
{ }_{n} C_{r}=\frac{n!}{(n-r) r!}
$$

Combination

$$
\begin{aligned}
{ }_{6} C_{4} & = & { }_{6} P_{4} & = \\
{ }_{6} C_{4} & =\frac{6!}{(6-4)!4!} & { }_{6} P_{4} & =\frac{6!}{(6-4)!} \\
& =15 & & =360
\end{aligned}
$$

Example

- A student must select 4 of 7 essay questions to be answered on a test. In how many ways can this selection be made?

$$
\begin{aligned}
{ }_{7} C_{4} & =\frac{7!}{(7-4) \cdot 4!}=\frac{7!}{3!4!} \\
& =\frac{7 \cdot \not 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=35
\end{aligned}
$$

- There are 35 different ways that 4 of 7 questions can be selected.

Example

- An ice cream parlor has 20 different flavors. Cynthia orders a banana split and has to select 4 different flavors. How many different selections are possible?

$$
\begin{aligned}
\text { Ice cream choices } & ={ }_{20} C_{3} \\
& =1140
\end{aligned}
$$

Example

- Toastline Bakery is testing 5 new wheat breads, 4 bran breads and 3 oat breads. If it plans to market 2 of the wheat breads, 2 of the bran breads and one of the oat breads, how many different combinations are possible?

$$
\begin{aligned}
\text { Bread choices } & ={ }_{5} C_{2} \cdot{ }_{4} C_{2} \cdot{ }_{3} C_{1} \\
& =10 \cdot 6 \cdot 3 \\
& =180
\end{aligned}
$$

Addison

Example

- At a medical research center, an experimental drug is to be given to 16 people, 8 men and 8 women. If 14 men and 11 women have volunteered to be given the drug, in how many ways can the researcher choose the 16 people to be given the drug?

$$
\begin{aligned}
\# \text { of choices } & ={ }_{14} C_{8} \cdot{ }_{11} C_{8} \\
& =495,495
\end{aligned}
$$

